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Abstract

The steady laminar flow and thermal characteristics of a continuously moving vertical sheet of extruded material are studied close
to and far downstream from the extrusion slot. The velocity and temperature variations, obtained by a finite volume method, are
used to map out the entire forced, mixed and natural convection regimes. The effects of the Prandtl number (Pr) and the buoyancy
force parameter (B) on the friction and heat transfer coefficients are investigated. Comparisons with experimental measurements and
solutions by others in the pure forced and pure natural convection regions are made. In the mixed convection region, the results are
compared with available finite-difference solutions of the boundary layer equations showing excellent agreement. The region close to
the extrusion slot is characterized as a non-similar forced-convection dominated region in which NuxRe;l/ 2 drops sharply with
increasing Richardson number (Ri,). This is followed by a self-similar forced-convection dominated region in which NuxRe;l/ 2 levels
off with increasing Ri, until the buoyancy effect sets in. The existence and extent of the latter region depend upon the value of B. A
non-similar mixed convection region where increasing buoyancy effect enhances the heat transfer rate follows. Finally, this region is
followed downstream by a self-similar natural-convection dominated region in which Nu.Re;'/?> approaches the pure natural

X

convection asymptote at large Ri,. Critical values of Ri, to distinguish the various convection regimes are determined for different Pr

and B.
© 2003 Elsevier Inc. All rights reserved.

Keywords.: Continuously moving surface; Mixed convection; Laminar convection regimes; Backward boundary layer

1. Introduction

A continuously moving surface through an otherwise
quiescent fluid has many applications in manufacturing
processes. Such processes are hot rolling, metal and
plastic extrusion, continuous casting, glass fiber pro-
duction, and paper production (Tadmor and Klein,
1970; Fisher, 1976; Altan et al., 1979). Knowledge of
fluid flow and heat transfer is necessary for determining
the quality of the final products of these processes
(Karwe and Jaluria, 1988, 1991). This physical situation
is different from that of the classical boundary-layer flow
over a stationary flat plate (Blasius flow) because of
fluid entrainment toward the moving surface. Sakiadis
(1961a,b) was the first to recognize this backward
boundary-layer situation and used a similarity transfor-

" Fax: +966-1-467-6652.
E-mail address.: sanea@ksu.edu.sa (S.A. Al-Sanea).

0142-727X/$ - see front matter © 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijheatfluidflow.2003.10.001

mation to obtain a numerical solution for the flow field
of a continuously moving surface.

Since the pioneering work of Sakiadis, many authors
have analyzed the hydrodynamic and thermal charac-
teristics of such a class of boundary layer problems for
various conditions. Tsou et al. (1967) reported, analyti-
cally and experimentally, the flow and thermal fields
developed by a continuously moving surface and showed
that this flow is physically realizable under laboratory
conditions. Stretched surfaces with different velocity and
temperature conditions at the surface were studied by
Soundalgekar and Ramana Murty (1980), Grubka and
Bobba (1985), Jeng et al. (1986) and Ali (1994).

The buoyancy force resulting from the temperature
differences in the fluid can be important if the velocity of
the moving surface is relatively low and the temperature
difference between the surface and the fluid is large. This
can affect significantly the velocity and temperature dis-
tributions and, hence, the heat transfer rate from the
surface. Buoyancy effects in boundary layers on contin-
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Nomenclature
B buoyancy force  parameter = Gr,/Re} =
gﬁ(Tw - Too)v/ugv

Cra local skin-friction coefficient =1, /0.5p12,

Fi(Pr) a function of Prandtl number=0.75P"/?
[2.5(1 + 2P 4 2pr)] "

F,(Pr) a function of Prandtl number = 1.886P13/32—

1.445p/'/3

Gr, local Grashof number = gB(T,, — T, )x*/v?

h local heat-transfer coefficient

k thermal conductivity of fluid

L domain length

Nu, local Nusselt number = 4,x/k

p pressure

P dimensionless pressure = (p — p,)/pu?

Pr Prandtl number =v/a

Re, local Reynolds number = u,,x/v

Ri, local Richardson number =Gr,/Re? =
gﬁ(Tw - Too)x/ui’

S source term

T temperature

u velocity component in x-direction

U, surface velocity

U dimensionless velocity component =u/u,,

U’ dimensionless velocity component = uxGr;'/?/
(2v)

v velocity component in y-direction

vV dimensionless velocity component =v/u,,

X coordinate along direction of surface motion

X dimensionless coordinate =x/L

y coordinate along direction normal to surface
motion

Y dimensionless coordinate =y/L

Greeks

o thermal diffusivity

p volumetric thermal expansion coefficient

r dimensionless exchange coefficient

m dimensionless similarity variable = (y/x)Re!/?

1, dimensionless similarity variable =
(v/x)(Gr/4)

0 dimensionless temperature= (T — T.,)/
(Tw - TOO)

v kinematic viscosity

0 density

Tyx local shear stress

[0) a general dependent variable

Subscripts

critical conditions

pertains to entrained velocity
condition at surface

a general dependent variable

condition at ambient medium

g e oo

uously moving surfaces through an otherwise quiescent
fluid have been studied by Chen and Strobel (1980) and
Fan et al. (1997) for horizontal surfaces, by Chen (1998),
Ali and Al-Yousef (1998) and Fan et al. (1999) for vertical
surfaces, and by Moutsoglou and Chen (1980), Strobel
and Chen (1980) and Chen (2000) for vertical and inclined
surfaces. In the presence of buoyancy forces, similarity
solutions do not exist except for a restricted power-law
surface velocity and temperature distributions.

Mixed convection correlations for continuous mov-
ing sheets were reviewed by Chen and Armaly (1987).
They reported extensive correlations for horizontal, in-
clined and vertical moving sheets and for both the uni-
form wall temperature and uniform heat flux boundary
conditions in buoyancy-assisting and buoyancy-oppos-
ing situations. In a more recent review, Viskanta and
Bergman (1998) discussed several aspects related to the
moving plate problem. These include, for example, the
effects of the conjugate boundary conditions at the plate
surface, the effects of an externally induced forced flow
(moving plate in a parallel channel flow) and the effects
of suction and injection through a stretched surface.

In almost all the papers cited earlier, the studies
concentrated on the boundary layer far away from the
extrusion slot where the boundary layer approximations

are valid. However, the flow and heat transfer charac-
teristics are also important close to the slot where both
the friction and heat transfer coefficients attain their
largest values. A more general finite-difference formu-
lation using the full elliptic governing equations in-
cluding buoyancy effects was employed by Karwe and
Jaluria (1988, 1991) and Kang and Jaluria (1994). The
effect of buoyancy was found to be more prominent
when the plate moves vertically upward than when it
moves horizontally. It was also found that the elliptic
effects are important near the extrusion slot and decay
downstream. In a recent study, Al-Sanea and Ali (2000)
investigated the effects of the extrusion die and of suc-
tion and injection at the moving surface on the friction
and heat-transfer coefficient distributions with emphasis
on the region close to the extrusion slot using the full
elliptic equations. Critical Reynolds numbers to distin-
guish between the self-similar and non-similar regions
were also determined. However, the buoyancy effects
were not accounted for and, hence, only the pure forced
convection regime was analyzed.

The present investigation examines the effect of
buoyancy on the flow and thermal characteristics close
to and far downstream from the extrusion slot for
different Prandtl number fluids and buoyancy force



890 S.A. Al-Sanea | Int. J. Heat and Fluid Flow 24 (2003) 888-901

parameter values. Another objective is to determine the
critical values of Richardson number to delineate the
forced, mixed and natural convection regimes for a
continuously moving vertical heated surface.

2. Mathematical formulation and calculation procedure
2.1. Basic assumptions and governing equations

Fig. 1 shows a continuously moving vertical heated
plate emerging from a slot at a velocity u, and a
temperature 7,, in an otherwise quiescent fluid. The
gravitational body force is oriented in the negative
x-direction. The induced motion of the fluid is assumed
to be laminar, steady, and two-dimensional with ther-
mally active incompressible viscous fluid with constant
properties. Further simplification is made through the
use of the Boussinesq approximation. Subject to these
assumptions, the full elliptic governing equations can be
written as

U or
oU ov _ 1
ax "oy (m)
o, B | (U U
ax ey Fa(m*m)
oP GI’L
_ o Gn 2
6X+Rei @)
d d 1 [V @V oP
[ _V2 —_ | —=t— ] = —— 3
ax W) 577 ReL<6X2+6Y2> TR
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A
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ov/ox=0
oT/ox=0

u=0 g
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T=Teo

Extrusion
die

u=u,, v=0, T=T

Extrusion slot Continuously moving plate

Fig. 1. A schematic showing the physical situation and boundary
conditions of a continuously moving plate.

The length, velocity, temperature and pressure scales
selected to normalize the equations are L, u,, (T}, — To)
and pu?, respectively. The above set of equations can be
represented by a single equation of the form:

0 0 Iy (*¢ ¢
ax U a7 V)~ rep (6X2+6Y2> =S )
where ¢ is the general variable and stands for 1, U, V
and @ in Eqgs. (1)—(4), respectively; I'y is a dimensionless
exchange coefficient whose values are 0, 1, 1 and 1/Pr in
the above equations, respectively; and S, is a source
term that represents the right-hand-side of the equa-
tions. This general form of transport equation facilitates
the use of the same solution procedure for all equations.

2.2. Boundary conditions

With reference to Fig. 1, where the continuously
moving plate is drawn vertically upward from the slot at
x = 0 through an otherwise quiescent fluid, the follow-
ing boundary conditions are applied. Starting with
conditions at the plate surface (y = 0):

u=u, v=0 and T=T, (6)

where u,, and T, are constants.

The surface of the extrusion die, with the exception of
the slot, represents an impervious and stationary wall at
which:

u=0, v=0, and T=T, (7)

It was found in a previous study that this side wall has
an effect in creating a flow re-circulation region outside
the boundary layer as a result of fluid entrainment to-
ward the moving plate (Al-Sanea and Ali, 2000).
Therefore, the region close to the extrusion slot is strictly
elliptic and the boundary layer approximations cannot
be applied.

The free stream boundary is located far away from
the moving plate, therefore:

u=0, T=T,, and P = P (8)

This boundary is allowed to entrain fluid at velocity v,
and temperature 7,,. The velocity v, is not known be-
forechand and is determined iteratively by the calcula-
tions. Its value depends upon the mass flow rate drawn
outside the calculation domain by the viscous action of
the moving plate.

The following conditions are applied at the outlet
boundary:
Ou 0 v or

a— s &—07 a:() and P = Px (9)

These approximate fully developed conditions and are
quite adequate in the parabolic dominated flow region
especially when the outlet is ensured to be located far
downstream from the extrusion slot.

v =0,
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2.3. Numerical solution procedure

The numerical model uses a control-volume finite-
difference method for discretizing the governing partial-
differential equations, Eqs. (1)—(4), and is essentially the
same as that used by Al-Sanea and Ali (2000). The
pressure field and velocities are determined via the well-
known SIMPLE algorithm of Patankar and Spalding
(1972), with a slight difference in the way the finite-
volume equations are solved. The 2/E/FIX computer
program of Pun and Spalding (1977) was modified and
used to solve the present problem. The finite volume
equations are handled by this code on a line-by-line
manner. Al-Sanea et al. (1980) described and applied the
line-by-line procedure in computing re-circulating flows
with heat transfer. The scheme was found particularly
beneficial for flows where relatively large parabolic or
nearly parabolic regions exist along side the elliptic flow
regions. The present moving plate problem falls into
such a category where elliptic effects are dominant in the
region close to the extrusion slot while far enough
downstream the flow is predominantly parabolic.

All the numerical results are checked to be substan-
tially grid independent. This is achieved by obtaining
solutions with an increasing number of grid nodes until
a stage is reached where the solution exhibits negligible
change with further increase in the number of nodes.
The boundary layer thickness increases with distance
downstream from the slot and its thickness depends on
the values of Reynolds number, Prandtl number and the
buoyancy force parameter. Therefore, the locations of
the free stream and outlet boundaries are always
checked by numerical experiments to be far enough not
to influence the results in the region of interest. For
example, the free stream boundary would be located at a
distance of about 10% L which is greater than twice the
maximum thickness of the boundary layer present at the
very end of the plate for Rep = 10*, Pr=1 and
B=10"2

A non-uniform finite-volume grid is used with nodes
closely spaced in regions with steep variation of flow
properties; namely, near to the extrusion slot and the
plate. A grid size of 100x50 nodes in the x- and y-
directions, respectively, is normally employed. The grid
step sizes, Ax and Ay, increase in the x- and y-directions
(see Fig. 1) with expansion factors of about 1.1 and 1.2,
respectively.

Converged solutions are achieved when the changes in
all variables, for all nodes, produced in successive itera-
tions diminish and when the sums of the normalized
absolute values of residual errors in the finite volume
equations are reduced to a small value. Typical con-
verged results are obtained after about 700 iterations
starting from uniform initial fields; a near optimum re-
laxation factor in the range (0.2-0.5) is applied for the
dependent variables. Considerably larger number of it-

erations is needed for the pure natural convection cal-
culations and for those physical situations dominated by
natural convection. The calculations require about
1.4x107° s of CPU time per iteration for each variable
for each grid node on a Pentium 200 MMX micro-
computer.

3. Results and discussion

The results cover the entire mixed convection regime,
from pure forced convection to pure natural convection.
Different Prandtl number fluids are investigated in the
range 0.1 < Pr<10. Only buoyancy assisting flows are
considered and a wide range of the buoyancy force pa-
rameter is covered, 10~° < B < 1. Particular emphasis is
given to the region close to the extrusion slot where el-
liptic effects dominate. The various convection regimes
are mapped for different Pr and B in terms of Re, and Gr,.

3.1. Numerical model validation

The numerical model is validated by comparing pre-
dictions with previously published results under forced,
mixed and natural convection conditions. It is noted
that experimental data on the moving plate problem,
under the present conditions, are scarce and available
mainly for the limiting case of forced convection.

3.1.1. Forced convection

The forced convection problem was studied in detail
in both the non-similar and self-similar regions by Al-
Sanea and Ali (2000), in which the numerical model was
validated against the similarity method solutions and
results by others. In the present study, further validation
is carried out with emphasis on comparisons with
measurements.

Fig. 2a shows a comparison between the present
predictions and the velocity measurements of Tsou et al.
(1967). The dimensionless velocity U is defined as u/u,,
and 7, is the similarity variable defined as (y/x)Re!/>.
The Reynolds number of the data ranges from 5x 10* to
1.5x10°. The similarity solution obtained by Tsou et al.
is also shown on the figure as the dotted line and gives
an excellent agreement with the present finite-volume
results. Both solutions give very good agreement with
the measurements. However, the data tend to fall
slightly above the curves at large values of #,; this was
attributed to disturbances in the laboratory as was ex-
plained by Tsou et al. In the present calculations, self-
similar velocity profiles are obtained for Re, > 1500.
The measurements were taken far enough downstream
from the slot where the conditions were truly self-similar
inside the boundary layer. Temperature measurements
were not reported by Tsou et al. (1967) under laminar
flow conditions.
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Fig. 2. Pure forced-convection dimensionless velocity and temperature distributions versus the similarity variable #; showing comparison with
measurements and solutions by others at large Reynolds number; (a) velocity profile, and (b) temperature profile for Pr = 0.7.

Fig. 2b presents the dimensionless temperature dis-
tribution through the boundary layer formed on a
continuously moving flat plate with constant surface
temperature for Pr=0.7. Comparisons with experi-
mental measurements in air along with the finite differ-
ence solution of Chida and Katto (1976) show very good
agreement. The Reynolds number of the experimental
data ranges from 580 to 2100. In the present calcula-
tions, self-similar temperature profiles are obtained for
Re, > 300. It may be noted that achieving self-similarity
for the velocity profiles is delayed further downstream
compared to that for the temperature profiles due to the
existence of reverse flow region outside the boundary
layer and close to the extrusion slot which persists to
Re, =~ 1000 (Al-Sanea and Ali, 2000).

3.1.2. Mixed convection

Fig. 3a depicts Nusselt number variation with Rich-
ardson number showing comparisons between the
present finite-volume elliptic solutions and the boundary
layer solutions of Moutsoglou and Chen (1980) for
different Prandtl numbers as presented by Chen and
Armaly (1987). In order to absorb the effect of Pr and
correlate the heat transfer results, Chen and Armaly re-
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plotted the results of Moutsoglou and Chen on a single
graph with coordinates as shown in Fig. 3a. The Prandtl
number functions Fj(Pr) and F»(Pr) are defined in the
nomenclature. The present results for P = 0.7 have also
been presented for different values of the buoyancy force
parameter (B). The results show that Nu,Re;'/? in-
creases with Ri, far downstream from the extrusion slot.
In the region close to the extrusion slot where the
stream-wise diffusion becomes important, and hence
the full Navier-Stokes equations need to be solved, the
present predictions show a sharp increase in Nu,Re_'/?
with decreasing Ri,. It is noted that the boundary layer
solutions do not extend close to the extrusion slot. Be-
sides, the present results show that the effect of B is
confined to this elliptic region. More results and dis-
cussion regarding this point are given later. The agree-
ment between the present predictions and those reported
by Chen and Armaly (1987) is excellent.

The corresponding results for the local skin-friction
coefficient variation with dimensionless distance along
the plate are presented for different values of B in Fig. 3b
in terms of Cy.Re!/? versus Ri,. The results are com-
pared with those obtained by Moutsoglou and Chen
(1980) using the boundary layer approximations for

10 —rrrm—r ey Ty
I Present study:

Moutsoglou and Chen (1980):
4k 0 Pr=0.7
a Pr=7.0

" Forced conv.
asymptote

T "

o000 1 10 10°

(b) Riy

Fig. 3. Mixed convection Nusselt number and skin-friction coefficient variations with Richardson number showing comparison with boundary layer

solutions; (a) Nusselt number, and (b) skin-friction coefficient.
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Pr=0.7 and 7, and those of Chen (2000) for Pr = 0.7.
The shear stress at the wall is negative when the surface
velocity is greater than the adjacent fluid velocity. The
positive shear stress indicates the opposite due to ve-
locity overshoot caused by buoyancy effect at large Ri,.
The zero shear stress does not imply boundary layer
separation but corresponds to equal surface and adja-
cent fluid velocities. Once again, the results for different
B collapse onto one line as Ri, increases. At low Riy, the
effect of B is clear, and as B is reduced the results ap-
proach the forced convection asymptote. The pure
forced convection value of Cy,Re!/?, as calculated from
the present results, is —0.8873 which agrees very well
with —0.8875 found by Moutsoglou and Chen. Also, the
agreement between the present results in the mixed
convection region and those by Moutsoglou and Chen,
and Chen is excellent. The zero shear stress for B = 10~*
are calculated at Ri, = 0.673 and 1.425 for Pr = 0.7 and
7, respectively. The corresponding results of Moutsog-
lou and Chen using the boundary layer approximations
are 0.676 and 1.430, respectively.

The departure of Cy.Rel/> values from the forced
convection asymptote as Ri, increases is due to buoy-
ancy forces which start to show an effect. It is noted that
the results presented by Moutsoglou and Chen (1980)
and Chen (2000) extend only to Ri, =5 and 10, re-
spectively. As will be seen later, Ri, = 10 falls short of
the region where natural convection becomes dominant.
On the other hand, the present results extend well into
the pure natural convection region.

3.1.3. Natural convection

The numerical model is also validated under pure
natural convection conditions. This is affected by setting
u,, = 0 in which the inertia forces vanish and the flow
would be driven by buoyancy forces only. Under these
conditions, the local Nusselt number is a function of Pr
and Gr,. Fig. 4a depicts the variation of Nu,Gr;'/* with
Gr, for different Pr. At large values of Gr,, Nu,Gr;'/*is a
function of Pr only. This is true in the self-similar region

o " T r v
2
I : non—similor region
Il : self—similar region
I 1
T 8
—
IS
x
3 4
=z
2t
Self similar asymptote; |
Kays and Crawford (1993)
0.1 Lo s s iid e 4l
107 1 10° 10* 10°
(a) Gr,

where the stream-wise diffusion is very small and can be
neglected and, therefore, the boundary layer approxi-
mations are valid. However, at small values of Gr,,
Nu,Gr;'/* is not a constant for a given Pr and increases
rather sharply with decreasing Gr, as shown in the fig-
ure. At low enough Gr,, viscous forces dominate over
the buoyancy forces and the energy equation reduces to
a pure conduction equation in which Pr has no rele-
vance. The results in Fig. 4a show this behavior clearly
in which Nu,Gr'/* becomes independent of Prandtl
number and, for the Prandtl number range investigated
in the present study, all results collapse onto a single line
for Gr, < 107!, At the other extreme of large Gry,
Nu,Gr'/* reach asymptotically the self-similar values
for each value of Prandtl number as indicated by the
long-dashed horizontal straight lines. These self-similar
asymptotic values, as reported in Kays and Crawford
(1993), agree extremely well with the present finite-vol-
ume results as shown in Fig. 4b.

The short dashed line drawn in Fig. 4a distinguishes
the self-similar natural convection region to the right
(region II) from the non-similar natural convection re-
gion to the left (region I) by connecting the critical
values of Grashof numbers (Gr, ) for different values of
Pr. These critical values are calculated by applying the
“5% criterion”, i.e. a Gry. value is obtained for a given
Pr by calculating Gr, at which Nu,Gr'/# deviates by 5%
from its asymptotic self-similar value. The results show
that Gr,. decreases as Pr increases.

3.2. Velocity and temperature distributions

Representative dimensionless velocity profiles at dif-
ferent stream-wise locations given by Ri, are displayed in
Fig. 5a—d for Pr = 1 and B = 1072, In Fig. 5a and b, the
u-velocity component normalized by the moving plate
velocity (U =u/u,) is plotted versus the transverse
distance y normalized by the plate length (Y =y/L).
Fig. 5a covers the region close to the extrusion slot
where forced convection dominates, while Fig. 5b (note

Present study

O Kays and Crawford (1993)

0.1 l'IO"‘ * ‘11 - 16
(b) Pr

Fig. 4. Pure natural-convection heat transfer results showing comparison with asymptotic values for different Pr; (a) Nusselt number variation with
Grashof number, and (b) Nusselt number variation with Prandtl number at large Gr,.
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Fig. 5. Dimensionless velocity distributions for different Richardson numbers, Pr = 1 and B = 10~2; (a) and (b) versus the transverse coordinate Y,

and (c) and (d) versus the similarity variables #; and #,.

the change in scale) extends over the entire mixed con-
vection region and well into the natural convection re-
gion (these regions will be delineated clearly later).

Fig. 5a shows negative velocities outside the bound-
ary layer and close to the extrusion slot (low Ri,). This
indicates the presence of reverse flow as a consequence
of an adverse pressure gradient directed toward the slot.
The latter is created by the action of the moving plate,
fluid entrainment toward the plate surface and the effect
of the side wall (extrusion die). This re-circulation region
disappears further downstream with increasing Ri,. The
stream-wise velocity approaches the stagnant ambient
value as Y increases; also, the velocity gradient at the
plate (Y =0) decreases with increasing Ri, as the
boundary layer thickens. It is noted that the velocity
profile starts to bulge upward for Ri, > 0.5, see Fig. 5b,
and there is a velocity overshoot for Ri, > 1 due to the
action of buoyancy which increases with Ri,. At
Ri, = 70, the maximum velocity in the boundary layer is
over six times that of the moving plate. The maximum
velocity location shifts away from the plate surface with
increasing Ri,. It is also interesting to note that the ve-
locity gradient at the surface changes sign at Ri, between
0.5 and 1 where the absolute value of shear stress de-
creases to zero and then increases further downstream.
This behavior can be realized by reference to Fig. 3b
where the zero shear stress is calculated at Ri, = 0.878
for Pr=0.7 and B = 1072

The same velocity distributions in Fig. 5a and b are
re-plotted in Fig. 5c and d versus #; and #,; note that U*
replaces U. These parameters are defined as

m= (y/x)Re)lc/z
1 = (v/x)(Gr./4)"* (10)
U = uxGr:'?/(2v)

where 1, and 5, are the dimensionless similarity vari-
ables for the forced convection and natural convection,
respectively, and U* is the dimensionless u-velocity
component more appropriate for use in natural con-
vection. The velocity profiles in Fig. 5¢ for
0.03 < Ri, < 0.09 are closer to each other relative to the
other profiles but are not close enough to be self similar.
In such a forced-convection dominated region, self-
similar velocity profiles would have been achieved at
some distance further downstream (Al-Sanea and Ali
(2000)). However, under the present conditions, mixed
convection effects which manifest themselves at
Ri, > 0.1 (as will be seen later) do not allow similarity to
take place. It is noted that similarity solutions are not
attainable under the present mixed convection condi-
tions. Much further downstream, and for Ri, > 30, all
velocity profiles collapse onto one self-similar dimen-
sionless profile as shown in Fig. 5d. These similarity
profiles fall in the natural convection dominated region.
The maximum value of U* in the self-similar pure nat-
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ural-convection region is calculated to be 0.253 at
1, = 0.92 which agree very well with the values of 0.254
and 0.88, respectively, as inferred from graphical rep-
resentation in Schlichting (1979) for Pr = 1.

The corresponding results for the dimensionless
temperature distribution are presented in Fig. 6a-d.
Again, the profiles extend over a wide range of Riy
starting from the forced-convection dominated region,
covering the entire mixed convection region, and ending
well into the self-similar natural-convection dominated
region. It is clear that as Ri, increases the thermal
boundary layer thickness increases. Most interesting is
that the temperature profiles collapse onto one self-
similar profile for 0.02 < Ri, < 0.09, as indicated by the
results in Fig. 6c, just before buoyancy starts to show an
effect. Therefore, the temperature profiles attain self-
similarity closer to the extrusion slot than the velocity
profiles (cf. Fig. 5a). This is attributed to the presence of
the flow re-circulation region (a non-uniform condition)
just outside the velocity boundary layer. Incidentally,
and for the same reason, the thickness of the thermal
boundary layer is greater than that of the velocity
boundary layer. Nearer to the extrusion slot, Ri, < 0.02,
the temperature profiles are non-similar. This distin-
guishes the forced convection non-similar region in
which the boundary layer approximations break down.

OO il n A
0.0000  0.0001 _ 0.0002
(a)
1.0 ; . . .
N\, Pr=1 B=10""
RN |
0.8} S Ri=
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@ | \".Q \\\\\
0.4} S ;
0l Ri,= 002 " - ]
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For Ri, > 0.09, the temperature profiles versus 7, start
to deviate from the self-similar profile. This marks the
start of the mixed convection region which precludes self
similarity. As Ri, increases to about 30, the temperature
profiles collapse once again onto a single self-similar
profile, but this time versus 7, (Fig. 6d), as the buoyancy
forces dominate over the inertia forces. Similarity solu-
tions for pure natural convection are, therefore, attain-
able at Ri, > 30 for Pr = 1.

Dimensionless temperature profiles for other values
of Pr, which are not presented to conserve space, show
that as Pr increases the thermal boundary layer thickness
decreases, and as Ri, increases, for a given Pr, the ther-
mal boundary layer thickness increases as expected.

3.3. Heat transfer convection regimes

Fig. 7a and b present the heat transfer characteristics
along the moving plate in terms of Nu,Re; /> versus Ri,
for Pr =1 and different values of B. Fig. 7a shows an
interesting feature for the individual behavior of each
convection mode acting alone in the absence of the other
mode. The solid lines are for both forced and natural
convection acting together (mixed convection). It is
emphasized that both B and Ri, are not relevant to either
of the pure forced convection or the pure natural
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Fig. 6. Dimensionless temperature distributions for different Richardson numbers, Pr = 1 and B = 10~2; (a) and (b) versus the transverse coordinate

Y, and (c) and (d) versus the similarity variables #; and #,.
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Fig. 7. Nusselt number variations with Richardson number for Pr = 1 and different B; (a) showing convection mode contribution, and (b) showing

convection regimes.

convection; of course, Re, and Gr, are the appropriate
dimensionless parameters for the forced and natural
convection, respectively. However, the results are plot-
ted versus Ri, (a dimensionless distance along the sur-
face) in order to have a direct comparison between the
heat transfer results of the different convection modes
and, also, to use a suitable criterion to delineate the
forced, mixed and natural convection regimes. It is no-
ted that the natural convection results in terms
of Nu,Gr;'/* have been transformed into the form of
forced and mixed convection results in terms of
Nu,Re_'/? by using:

Nu.Re.'? = Nu,Gr"*Ril/* (11)

It should also be noted that the values of the parameter
B in Fig. 7a have the mere effect of shifting the pure
forced and natural convection results on the plot and
appeared through the above transformation.

The pure forced convection results presented in Fig.
7a show that Nu,Re;'/? decreases with increasing Ri,
and reaches a constant asymptotic value with a further
increase in Ri,. This constant value is the pure forced-
convection asymptote in the self-similar forced convec-
tion region. A 5% increase in this value would mark the
critical conditions that distinguish this region from the
non-similar pure forced-convection region (Al-Sanea
and Ali, 2000).

The pure natural convection results presented in Fig.
7a show that Nu,Re;'/? decreases with increasing Ri, to
a minimum and then increases with Ri,. The minimum
value separates the natural convection non-similar re-
gion from the self-similar region. This has been dis-
cussed previously and presented in Fig. 4a for different
Pr. The value of Nusselt number for pure natural con-
vection becomes equal to that for pure forced convec-
tion around Ri, =1 at which there is an equal
contribution to the heat transfer rate from either mode.
For Ri, > 1, the heat transfer rate due to pure natural
convection becomes greater than that due to the pure
forced convection.

It is interesting to note how Nu,Re;!/? for mixed
convection deviates (increases) gradually from the pure
forced convection results with increasing Ri,, for any
value of B, and then approaches asymptotically the
natural convection results at large Ri,. The heat transfer
results would also be independent of B at large Ri,, since
B is relevant only to mixed convection. An interesting
behavior of the results in Fig. 7a is that Nu,Re; '/ is the
same for any convection mode at low Ri, (depending
upon B). This is due to the fact that at low Ri,, the
problem becomes dominated by diffusion and, hence,
the temperature field and the heat transfer rate at the
plate surface become independent of the velocity field
and, therefore, independent of the heat convection
mode. In practice, this region would occupy only a tiny
part close to the extrusion slot.

A criterion used by previous investigators to delineate
the mixed convection regime for the Blasius boundary-
layer problem is used in the present study to delineate
the convection regimes for the present moving plate
problem. This is based on the “5% criterion”, that is
based on the heat transfer enhancement due to mixed
convection over either of the pure forced or pure natural
convection results. Therefore, a 5% increase in Nu, over
that of pure forced convection would mark the critical
Richardson number (Ri,.;) that distinguishes the pure
forced convection regime from the mixed convection
regime. Similarly, a 5% increase in Nu, over that of pure
natural convection would mark Ri, ., that distinguishes
the pure natural convection regime from the mixed
convection regime. This procedure is applied for differ-
ent values of Pr and B (the parameters of concern in the
present study).

Fig. 7b depicts Nu,Re;'/? variation with Ri, for
Pr=1 and different values of B. The pure forced and
pure natural convection asymptotes are also shown for
comparison. Two dashed lines are drawn to distinguish
between the pure forced convection regime (region I),
the mixed convection regime (region II) and the pure
natural convection regime (region III). It is noted that
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the mixed convection regime extends over 0.1 < Ri, <40
with the lower limit depending upon the value of B
which, generally, increases with B. Here, similarity
method solutions are not applicable and local similarity
and/or local non-similarity methods may be used. It is
also noted that the heat transfer results in the mixed
convection region are affected by B for B > 107, Be-
sides, for B < 107, Nu,Re_'/> approaches asymptoti-
cally the pure forced convection value of 0.4438, as
reported by Jacobi (1993), before it starts to increase
with Ri, due to buoyancy effect. This suggests that a self-
similar forced-convection dominated region exits, the
extent of this region depends upon the value of B. The
self-similar dimensionless temperature profiles shown
earlier in Fig. 6¢c indicated that such a region would exist
even for a value of B as high as 1072

The curves for different values of B shown in Fig. 7b
correspond generally to low values of Re, at which the
stream-wise diffusion is important and hence the hy-
drothermal characteristics are non-similar. Since
Re, = Ri,/B, therefore as Ri, increases for a given value
of B, Re, increases and the characteristics become self-
similar as the stream-wise diffusion vanishes. Accord-
ingly, all curves meet and collapse onto a single line with
increasing Ri, as shown. This single line approaches
gradually, at large Ri,, the pure natural-convection as-
ymptotic value. The latter value can be found in, for
example, Kays and Crawford (1993).

Fig. 8a shows the variation of Nu,Re; '/ versus Ri,
for B = 1072 with the Prandtl number as a parameter.
The circles on the solid lines mark both Riy . and Riy >
and the dashed lines connecting these circles, therefore,
distinguish between the forced convection regime to the
left (region I), the mixed convection regime at the middle
(region II) and the natural convection regime to the
right (region III). In general, Ri,. and Ri, . increase
with Pr. The exception is for Ri,. for Pr=0.1 where
Ri, .1 decreases a little and then increases with increasing
Pr. It is evident that Nu,Re_!/? increases with Pr for a
given Ri,, as expected. Also, the heat transfer results
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become independent of Pr at low Ri, (Ri, < 1073 for
B=10"2 and Pr<10) and would have a power law
variation with Ri,. This is since the problem becomes
diffusion dominated and, hence, independent of Pr.

Fig. 8b presents the corresponding local skin-friction
coefficient variation over the surface in terms of
Cf_XRe}/2 versus Ri,. Similar remarks may be made to
those discussed in Fig. 3b. Besides, it is interesting to
note that the friction coefficient becomes independent of
Pr for Ri, < 0.2 since forced convection becomes domi-
nant and, hence, the hydrodynamics become indepen-
dent of the heat transfer. It is also noted that the
locations of the vanishing shear stress at the plate sur-
face (Cr, = 0) move downstream as Pr increases. These
locations are: Ri, = 0.76, 0.80, 0.97, 1.28 and 1.88 for
Pr=0.1,0.3, 1, 3 and 10, respectively, and B = 10~2.

Finally, maps for delineating the forced, mixed and
natural convection regimes are developed. These maps
are presented as a function of Reynolds number and
Grashof number for B = 1072 and for Pr = 0.1, 1, 3 and
10 in Fig. 9a—d, respectively. The mixed convection re-
gime is bound by two boundaries shown in the figures
which are determined from the critical values of Rich-
ardson number. The two boundaries are: an upper
forced-convection boundary which separates the forced
convection from the mixed convection regimes, and a
lower natural-convection boundary which separates the
mixed convection from the natural convection re-
gimes. The critical values of Richardson number are
determined according to the 5% criterion discussed
earlier.

Equations that define the dividing boundaries are
also shown on Fig. 9a—d. These equations are power law
equations with coefficients calculated from the critical
values of Richardson number (Ri, 1 and Ri,.) accord-
ing to

Re, = Ri;j/zGr;/z (12)

Ranges of Richardson number for the various convec-
tion regimes are summarized in Table 1; values of Ri,

Pr =

= 0.1, 0.3, 1,
3 and 10

Ll

B=107 ]

T 10 10°
(b) Rix

Fig. 8. Nusselt number and skin-friction coefficient variations with Richardson number for B = 102 and different Pr; (a) Nusselt number, and (b)

skin-friction coefficient.
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Table 1

Range of Richardson number (Ri,) for the various convection regimes showing the effect of Prandtl number (Pr) and buoyancy force parameter (B)?

Pr B Forced convection Mixed convection Natural convection
0.1 10~ Ri, < 0.006 0.006 <Ri, <3.3 Ri, >33
1 104 Ri, < 0.136 0.136 <Ri, <37 Ri, > 37
3 10~ Ri, < 0.525 0.525 < Ri, <108 Ri, > 108
10 10~4 Ri, < 1.73 1.73 < Ri, <374 Ri, > 374
0.1 103 Ri, < 0.026 0.026 <Ri, <3.3 Ri, >33
1 1073 Ri, < 0.115 0.115 < Ri, <37 Ri, > 37
3 1073 Ri, < 0.511 0.511 <Ri, <108 Ri, > 108
10 1073 Ri, < 1.70 1.70 < Ri, <374 Ri, > 374
0.1 1072 Ri, < 0.110 0.110< Ri, <3.3 Ri, >33
1 102 Ri, < 0.107 0.107 < Ri, <37 Ri, > 37
3 102 Ri, < 0.475 0.475 < Ri, <108 Ri, > 108
10 1072 Ri, < 1.70 1.70 < Ri, <378 Ri, > 378
0.1 107! Ri, < 0.468 0.468 <Ri, <3.3 Ri, >33
1 107! Ri, < 0.240 0.240 < Ri, <38 Ri, > 38
3 107! Ri, < 0.376 0.376 <Ri, <111 Ri, > 111
10 107! Ri, < 1.61 1.61 <Ri, <378 Ri, > 378
0.1 1 Ri, < 2.08 2.08 <Ri, <-° Ri, > -°

1 1 Ri, < 0.85 0.85 < Ri, <40 Ri, > 40
3 1 Ri, < 0.70 0.70<Ri, <117 Ri, > 117
10 1 Ri, < 1.29 1.29 < Ri, <381 Ri, > 381

#The two critical Richardson numbers, Ri, ., and Ri, ., are the lower and upper limits in the mixed convection region.
®Riy.» could not be obtained since the 5% criterion overshot the mixed convection results throughout the whole region.

The convection map for Pr = 0.1, shown in Fig. 9a, is
characterized by a relatively narrow mixed convection
regime. In general, for a given Gry, the Re, range that

and Ri,., can, in turn, be substituted in Eq. (12) to
obtain the corresponding equations for the dividing
lines.
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Fig. 10. Nusselt number variation with Richardson number for P+ = 0.7 and B = 107> showing comparison between moving and stationary plates;

(a) Nusselt number, and (b) Nusselt number ratio.

identifies the mixed convection regime decreases with
increasing Pr. Also, the change from the forced con-
vection regime to the natural convection regime, for a
given Re,, occurs over a range of Gr, that increases with
Pr. Note that the width or height of the mixed convec-
tion band, as it looks on the figure, is not indicative of
the actual range of values because of the logarithmic
scales.

The convection regime maps are useful in the sense
that when Ri, < Ri, ., natural convection effects can be
ignored; if Ri, > Ri, ., forced convection effects can be
ignored. The results in Fig. 9a—d along with other results
for different values of B are summarized in Table 1. To
the author’s best knowledge, convection regime maps of
the moving plate problem (backward boundary layer)
have not been previously developed.

3.4. Comparison between the moving and stationary plates

It is interesting to compare the results for the con-
tinuously moving plate in an otherwise a stationary fluid
with those for the moving fluid over a stationary plate.
For the latter problem, the boundary conditions corre-
spond to u =0 at y =0 and u = u, as y — oo in which
case the situation is simply transformed to a Blasius-
type problem. Fig. 10a presents the local Nusselt num-
ber variation along the plate for the two respective cases
calculated for Pr = 0.7 and B = 107>. The present results
for the case of the moving fluid over a stationary plate
are also compared with the experimental measurements
and predictions of Ramachandran et al. (1985) showing
excellent agreement. The forced and natural convection
asymptotes, see for example Kays and Crawford (1993),
are shown for comparison. These asymptotes illustrate
the region where mixed convection results deviate from
the pure forced convection and pure natural convection
values. It is noted that u, is the free-stream velocity and
that Re, and Ri, for the case of the stationary plate are
based on u,,. As can be seen from Fig. 10a, Nu, and,
hence, the heat transfer rates are higher for the moving

plate case for any given value of Ri,. The results of the
two cases approach the same natural convection as-
ymptote at large Ri,.

Fig. 10b shows a comparison of the two cases in
terms of Nu, ,,/Nu, s variation with Ri,; the subscripts m
and s denote the moving and stationary plates, respec-
tively. This local Nusselt number ratio is greater than
one and decreases with increasing Ri,. At Riy = 1072, i.e.
in the forced-convection dominated region, the ratio is
about 1.18 and compares very well with the value of
1.1846 as would have been calculated by Tsou et al.
(1967) and Jacobi (1993) under pure forced convection
conditions. On the other hand, at Ri, = 102, i.e. in the
natural-convection dominated region, the ratio is about
1.01 and approaches one at larger Ri,. This is expected
since the differences between the two cases; namely,
Blasius- and Sakiadis-type problems, diminish as the
buoyancy forces dominate over the inertia forces.

4. Conclusions

The heat transfer and friction characteristics along a
continuously moving vertical sheet of extruded material
in an otherwise quiescent fluid were studied close to and
far downstream from the extrusion slot. The numerical
model, based on a finite volume procedure, was vali-
dated against published results available for special sit-
uations with excellent agreement. Regimes of forced,
mixed and natural convection have been delineated, in
buoyancy assisting flows, as a function of Reynolds and
Grashof numbers for different values of Prandtl number
and buoyancy force parameter. Under the conditions
and range of parameters investigated in the present
study the following remarks are made.

(1) At low Ri,, the heat transfer rates due to different
convection modes are all equal. This is attributed
to the fact that diffusion dominates over both inertia
and buoyancy in the region close to the extrusion
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slot. Little further downstream, inertia forces start
to show an effect as the stream-wise diffusion dimin-
ishes. Therefore, heat transfer enhancement over
that of pure natural convection takes place. Further
downstream, the buoyancy forces start to have an
effect and the mixed convection results deviate from
the forced convection results. Heat transfer en-
hancement due to buoyancy forces continues with
distance downstream and, as the buoyancy forces
dominate over the inertia forces, the heat transfer
rate due to pure natural convection, once again,
equals that of the mixed convection at large Ri,.

(2) The heat transfer rate drops sharply with distance
in the non-similar forced-convection dominated re-
gion. The drop continues downstream but at a
slower rate as the thermal boundary layer thickens.

(3) Critical values of Gr, were determined for different
Pr that distinguish the non-similar pure natural-
convection region from the self-similar region. It
was found that Gr,. decreases as Pr increases.

(4) The heat transfer results in the mixed convection
region are affected by the buoyancy force parame-
ter (B) for B > 1074,

(5) The existence and extent of a self-similar forced-
convection dominated region depend upon the va-
lue of B. This region is diminished for B > 1072.

(6) Atlow Ri,, the heat transfer results become indepen-
dent of Prandtl number and the convection mode.

(7) The vanishing shear stress at the plate surface is lo-
cated at 0.76 <Ri, <1.88 for 0.1 <Pr<10 and
B = 1072, The friction coefficient becomes indepen-
dent of Pr for Ri, < 0.2.

(8) In general, the extent of the forced-convection
dominated regime increases with Pr and, hence,
the location of the mixed convection regime is
moved downstream.

(9) For a given Re,, the transition from the forced con-
vection regime to the natural convection regime oc-
curs over a range of Gr, that increases with Pr.

(10) Comparisons of mixed convection results between
the moving and stationary plates show that the heat
transfer rate for the moving plate is higher than that
for the stationary plate for given Pr, B and Ri,. The
difference in results between the two cases decreases
as Ri, increases and diminishes as the buoyancy
forces dominate over the inertia forces.

As a final note of caution, laminar flow is assumed
to be valid for the entire mixed convection regime that
is presented in the study. This laminar assumption
limits the applicability to situations with relatively low
velocity, i.e. Re, < 5x 10° and/or Ra, = Gr.Pr < 10°.
Turbulent flow must be considered in high velocity sit-
uations. Also, it is emphasized that since the results were
obtained from numerical solution of the laminar gov-
erning equations, therefore, they do not account for the

outside physical effects that may cause instability and
transition to turbulence.
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